
Two-stream Attentive CNNs for Image Retrieval

Fei Yang
Institute of Information Science,

Beijing Jiaotong University,
Beijing Key Laboratory of

Advanced Information Science and
Network Technology,
Beijing, China 100044

Jia Li∗

State Key Laboratory of Virtual
Reality Technology and Systems,
School of Computer Science and
Engineering, Beihang University
International Research Institute
for Multidisciplinary Science,

Beihang University
jiali@buaa.edu.cn

Shikui Wei∗

Institute of Information Science,
Beijing Jiaotong University,
Beijing Key Laboratory of

Advanced Information Science and
Network Technology,
Beijing, China 100044
shkwei@bjtu.edu.cn

Qinjie Zheng
Institute of Information Science,

Beijing Jiaotong University,
Beijing Key Laboratory of

Advanced Information Science and
Network Technology,
Beijing, China 100044

Ting Liu
Institute of Information Science,

Beijing Jiaotong University,
Beijing Key Laboratory of

Advanced Information Science and
Network Technology,
Beijing, China 100044

Yao Zhao
Institute of Information Science,

Beijing Jiaotong University,
Beijing Key Laboratory of

Advanced Information Science and
Network Technology,
Beijing, China 100044

ABSTRACT

In content-based image retrieval, the most challenging (and
ambiguous) part is to define the similarity between images.
For the human-being, such similarity can be defined with
respect to where they pay attention to and what semantic
attributes they understand. Inspired by this fact, this
paper presents two-stream attentive CNNs for image re-
trieval. As the human-being does, the proposed network
has two streams that simultaneously handle two tasks. The
Main stream focuses on extracting discriminative visual
features that are tightly correlated with semantic attributes.
Meanwhile, the Auxiliary stream aims to facilitate the
main stream by redirecting the feature extraction operation
mainly to the image content that human may pay attention
to. By fusing these two streams into the Main and Auxiliary
CNNs (MAC), image similarity can be computed as the
human-being does by reserving the conspicuous content and
suppressing the irrelevant regions. Extensive experiments
show that the proposed model achieves impressive perfor-
mance in image retrieval on four public datasets.
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1 INTRODUCTION

With the booming of smart phones and digital cameras,
the amount of images grows surprisingly fast in our daily
life. To maximize the value of such big visual data, it
is necessary to develop an image search approach that is
capable of retrieving images with the desired content. For
such a content-based image retrieval (CBIR) approach, one
of the key challenges is to infer the inherent query intention
expressed by a query image. As shown in Fig. 1, confusion
may arise in determining what is the desired content [26, 54],
while the similarity between images may be defined in
visual [4, 15, 59] and/or semantic [3, 10, 39] levels. Actually,
the ambiguity in capturing the inherent query intention acts
as a major obstacle in CBIR.

In the past decades, hundreds of approaches have been
proposed for fast and reliable CBIR [46, 47]. For example,
many hashing methods [27, 37, 44] based on SIFT [40, 57]
and GIST [27, 43] features have been proposed to make
the similarity computation faster and more semantic, while
other cues like emotion [20] have been explored as well.
In particular, recent advances in deep learning [13, 14, 21,
38] provide an opportunity to overcome the well-known
semantic gap in CBIR [5, 6, 12, 34, 35]. For example,
Razavian et al. [34] first extracted sub-patches from different
locations in an image and characterized them with deep
features. Such features are then compressed to compute
patch-based similarity. Gong et al. [12] extracted deep
features from patches at different scales and locations by
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Figure 1: Capturing the inherent query intention plays
an important role in correctly retrieving the desired
target images. Toward this end, we propose a two-
stream attentive CNNs that start from a Main semantic

stream and an Auxiliary attention stream, which are
fused and simultaneously fine-tuned so as to capture and
characterize such inherent intention.

using Convolutional Neural Networks (CNNs) as well as
orderless pooling strategies. In [5], local deep features
were aggregated to produce compact global descriptors for
image retrieval. Typically, such CNN-based approaches can
outperform classic SIFT- or GIST-based approaches since
the feature extracted by CNNs are generally considered to
be closer to the semantic attributes of images. However,
such features are extracted from the whole image, making
them somehow inaccurate to capture and characterize the
inherent query intention (e.g., the desired content).

To develop a CBIR approach that is capable of capturing
inherent query intention, we first turn to a fundamental ques-
tion: how does the human-being compute visual similarity
during their cognitive visual processes? With this question
in mind, we first explore the cognitive mechanisms like visual
attention and object recognition in human vision system and
then propose two-stream attentive CNNs for image retrieval.
As shown in Fig. 1, the Main and Auxiliary CNNs, denoted
as MAC, start from two separate streams that handle
different cognitive tasks. The Main stream is initialized with
VGG16 [38], while the Auxiliary stream is initialized with
DeepFixNet [30]. In other words, the Main and Auxiliary
streams start from the tasks of semantic attribute prediction
and visual attention prediction, respectively. Considering
that such semantic and attentive cues are tightly correlated
with but not equivalent to the inherent intention in a
query image, we further fuse them and fine-tune the entire

networks on existing image retrieval datasets. In this
manner, the semantic and attentive cues can be gradually
modulated to reflect the inherent query intention. As a
result, we can obtain reliable similarity scores between a
query image and all candidate images by using the output
features of MAC, even with a very simple ℓ2 distance
measure. Extensive experiments show that our approach
achieves impressive performance on 4 public datasets. In
particular, our approach further validates its effectiveness
in many (synthesized) challenging scenarios like rain/snow
and low-resolution/low-quality, implying that it can be even
suitable for many real-world applications.

Our main contributions can be summarized as follows:
1) we propose a two-stream attentive CNNs to capture the
inherent intention in image retrieval; 2) we conduct extensive
experiments on 4 public datasets to validate the performance
of MAC from various perspectives. Moreover, we synthesize
many challenging scenarios that further validate the scala-
bility of MAC in real-world scenarios.

2 RELATED WORK

The proposed attentive CNNs are tightly correlated with
CNN-based or attention-guided CBIR approaches, which
will be briefly reviewed in this Section.

2.1 CNN-based CBIR

Due to the remarkable success of deep learning, they have
been introduced into image retrieval in many different ways
like local feature extraction [5, 12, 22, 31, 34, 61], global
feature extraction [25, 33, 55, 60], hashing [23, 36, 53, 58],
semantic annotations [49, 51], semantic segmentation [48, 50]
or similarity computation [2, 7, 9, 56]. For example, Paulin et
al. [31] proposed to learn patch descriptors without supervi-
sion. In their approach, the convolutional kernel networks
were adopted to extract patch features for matching and
instance-level retrieval.

In global feature extraction, Razavian et al. [34] used
Structure-from-Motion (SfM) method to get 3D models,
which can guide the selection of deep features. Zheng et
al. [60] fused various features by extracting the output of
pooling layers in VGG and Alexnet for image retrieval.
Zhou et al. [61] used the match function to integrate SIFT
and CNN features. A threshold exponential match kernel
method was proposed to calculate the scores of similar
images.

In CNN-based hasing, Xia et al. [53] proposed a CNN-
based Hashing method. They broke down similarity matrix
and generated the binary encoding results. Zhao et al. [58]
proposed a Deep Semantic Ranking Hashing method. They
used CNNs to learn the ranking of retrieval results and
optimize the evaluation index.

In similarity computation, Zagoruyko et al. [56] proposed
to directly learn visual similarity from image pairs by using
two-stream networks. Bontar et al. [9] learned the similarity
measure on small image patches by using CNNs.
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2.2 Attention-guided CBIR

As visual attention can depict the most conspicuous con-
tent in images, they have been incorporated into CBIR.
Generally speaking, the most straightforward way to use
visual attention is to detect attention regions for subsequent
feature extraction stage. For example, Wen et al. [52]
extracted SIFT and color features from attention regions to
retrieve images. Giouvanakis and Kotropoulos [11] combined
a classic attention model with the Bag-of-Words (BOW)
model by extracting SIFT features only from attention
regions. Wang et al. [8] used attention regions to select a
subset of SIFT points for image retrieval. Actually, many
such attention-guided models have been proposed [1, 8, 17,
42], but the performance gained from such straightforward
usage of visual attention is usually not as high as expected. It
is still not clear how to correctly use visual attention in CBIR.
Moreover, existing attention models, which are mainly
developed for predicting human fixations in free-viewing
conditions, may be not suitable for the CBIR task if they
are directly used without being fine-tuned. Furthermore,
most of such attentive CBIR models are developed based
on classic features (e.g., SIFT), which often perform much
worse than deep features in depicting semantic attributes of
the desired image content.

To sum up, CNN-based CBIR approaches can extract
features or learn similarity measures that are closer to
semantic. However, a key challenge for these approaches is:
how to extract features only from the desired image content
so as to avoid the influence of irrelevant regions. In other
words, existing CNN-based approaches can extract powerful
features with unexpected noise beyond the desired image
content. On the contrary, attentive CBIR approaches can
filter out irrelevant regions. But the classic features used
by most attentive models are relatively weak. Moreover,
most attention models are developed for fixation prediction
in free-viewing conditions, and it may be inappropriate to
directly use them in CBIR without revision. Inspired by
these facts, we propose two-stream attentive networks for
CBIR, in which the two streams are initialized for fixation
prediction and semantic recognition, respectively. These two
streams are then fused and fine-tuned together on image
retrieval datasets so that the extracted attention cues and
semantic features become more suitable for the CBIR task.

3 MAC: TWO-STREAM ATTENTIVE
NETWORKS FOR CBIR

To capture the inherent query intention, we propose two-
stream attentive networks for CBIR. In this section, we
first introduce the architecture of the proposed Main and
Auxiliary CNNs (MAC), followed by the details that describe
how to train such a model and how to use MAC for CBIR.

3.1 System Framework

As shown in Fig. 2, the core of the proposed CBIR approach
is the two-stream attentive networks, which can be denoted

as Main and Auxiliary CNNs (MAC). Different from previ-
ous works, MAC has two separate streams that are initialized
for different cognitive tasks. Both streams take a 224× 224
image with three channels as the input.

The Main stream is initialized as the first five major
convolutional and pooling groups (i.e., from CONV1 1 to
CONV5 3 and POOL5). Finally, the major stream will output
a 7×7 map with 512 channels, while such a map, denoted as
a 3D matrix Xmain, contains high-level cues extracted from
both the desired image content and the irrelevant regions.
As a result, such feature maps need to be further refined to
obtain cleaner semantic features that can characterize the
inherent query intention.

Toward this end, we incorporate the Auxiliary stream to
filter out the unexpected noise from the original features
extracted by the Main stream. To maintain the features that
may be useful for the task of image retrieval, we initialize
this stream with the DeepFixNet [30], the CNNs that are
developed for fixation prediction. In the initialization, we
select the first eight convolution layers together with the
related pooling layers and generate a 56 × 56 map with 32
channels. After that, such a feature map enters a pooling
layer and is then reshaped to 7× 7 maps with 512 channels.
Similar to the Main stream, the output map is denoted as
Xaux.

Compared with heuristic attention models, DeepFixNet
gains impressive performance in predicting attention (see
Fig. 3). With this stream, we can filter out the features from
regions that are irrelevant to the inherent query intention.
However, DeepFixNet is trained with eye-tracking data from
free-viewing experiments. As a result, it may not perfectly
meet the specific requirement of image retrieval. Therefore,
the parameters of this stream, as well as the Main stream,
need to be further fine-tuned on image retrieval datasets.
Toward this end, we first conduct element-wise fusion of the
output maps from the Main and Auxiliary streams:

Xfuse = λXmain + (1− λ)Xaux, (1)

where λ is empirically set to 0.6 to balance the output
features from the two streams. In this manner, the fused
feature map contains both semantic and attention cues,
which is converted to a lower dimensional feature vector via
three consecutive Fully Connected layers, denoted as FC6,
FC7 and FC8, respectively. Note that both FC6 and FC7

output 4096D feature vectors, while FC8 outputs a vector
with N components. For an image retrieval dataset, N
denotes the number of categories formed by aggregating
training images with similar contents (such similarity is
manually annotated by the human-being). By applying a
softmax layer after FC8 to turn its output to a probability
vector, we can train a classification network on image
retrieval datasets by solving the minimization problem:

W∗ = argmin
W

K∑
k=1

N∑
n=1

log(pkn, ykn) + β∥W∥22, (2)

where W denote the set of network parameters of MAC. pkn
is the nth component of the probability vector generated by
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Figure 2: The framework of the proposed CBIR system. The core of this framework is the two-stream attention
CNNs, which contain two separate streams. The Main stream is initialized with the semantic prediction networks

VGG16, while the Auxiliary stream is initialized with the fixation prediction networks DeepFixNet. These two streams
are then fused and simultaneously fine-tuned on image retrieval datasets so as to extract features that can well capture
and characterize the inherent query intention. Finally, such features are used to measure the similarity (computed as
the ℓ2 distance) between a query image and all images in the database.

the final softmax layer of MAC in processing the kth training
image. ykn is a binary indicator which equals to 1 only if
the kth training image belongs to the nth category of similar
training images. β is a constant that controls the norm of
parameters in MAC.

By minimizing (2), the MAC network gains the capability
to aggregate similar images and separate dissimilar images,
while such similarity is defined from the perspective of
image retrieval. In this manner, the features generated by
MAC can well capture and characterize the inherent query
intention for CBIR. In training MAC, we adopt the Caffe
platform [19] and utilize a batch size of 16. The learning rate
is initialized as 10−6, which will decrease twice, by a factor of
10, after the 33% and 66% of the maximum iteration number
have been reached, respectively. Moreover, a weight decay
of 0.0005 and momentum of 0.9 are used.

After training MAC, the two-stream attentive CNNs can
be used for image retrieval. Considering that the feature
dimension of FC8 varies with respect to different training
data, we adopt the 4096D feature vector generated by
the FC7 layer of MAC to characterize the inherent query
intention of a new query image. After that, the similarity
scores between this feature vector and those pre-computed
for the images in the database can be computed. Since
the main objectiveness is to demonstrate the powerfulness
of the proposed two-stream attentive CNNs, we only use
the simplest ℓ2 distance as the similarity measure, which
can already generate impressive performance by using the
powerful features from MAC.

4 EXPERIMENTS

To validate the effectiveness and scalability of MAC in
CBIR, we conduct a series of experiments from multiple
perspectives, including:

(1) Effectiveness test, which compares MAC with the
state-of-the-art and baseline models;

(2) Scalability test, which test the performance of MAC
by adding one million images into testing datasets, or synthe-
sizing more challenging real-world scenarios like rain/snow
and low-resolution/low-quality;

(3) Performance analysis, which investigates the perfor-
mance variation of MAC by changing key parameters.

Detailed experimental settings, performance scores and
representative results can be found as follows.

4.1 Settings

To conduct comprehensive evaluation of MAC, we adopt
four datasets from the areas of image retrieval and image
classification. Among these datasets, Oxford Paris [32] and
Ukbench [29] are two image retrieval datasets that are widely
used in the literature. Flower [28] and Bird [41] are two fine-
grained image classification datasets which can be also used
to benchmark the image retrieval models [16, 26]. For each
dataset, we split them into a training set and a testing set.
Details of the 4 datasets can be found in Tab. 1.

One problem in comparing image retrieval models is
that the performance of learning-based models may vary
remarkably before/after being fine-tuned on specific training
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Figure 4: Representative results of MAC on 4 datasets. (a) Oxford Paris; (b) Ukbench; (c) Flower; (d) Bird.

Figure 3: DeepFixNet achieves impressive performance
in predicting visual attention under the free-viewing
condition. However, it is still not clear whether such

types of visual attention can be directly used in image
retrieval task. As a result, it is necessary to fine-tune the
parameters of DeepFixNet on image retrieval datasets.
(a,d,g) Original images; (b,e,h) Fixation density maps

captured by our eye-tracking device that show the actual
human attention under free-viewing condition; (c,f,i)
Attention maps predicted by the DeepFixNet.

data. Therefore, we compare MAC with two state-of-the-art
models and two baselines, including:

Table 1: Details of the 4 benchmarking datasets

Datasets Total Training Testing Categories

Oxford Paris 6,392 5,192 1,200 12
Ukbench 10,200 5,100 5,100 2,550
Flower 7,169 6,149 1,020 102

Bird 11,788 6,788 5,000 200

(1) BOWE [45]: A non-deep approach that jointly op-
timize Bag-of-Words and embedding methods for image
retrieval.

(2) Siamese [56]: Two-stream CNNs that take a pair of
images as the input and output the similarity scores.

(3) Base-VGG: A baseline model formed by directly using
the 4096D features from the original VGG16 networks and
the same retrieval settings with MAC.

(4) Base-VGG-F: Different from Base-VGG, Base-VGG-F
is further fine-tuned on the same training data used by MAC
in all experiments so that the 4096D features it generated is
refined for the retrieval tasks.

To compare different models, we adopt the mean Average
Precision (mAP) as the evaluation metric, which is one of
the most widely used metrics in image retrieval.

4.2 Effectiveness Test

In the effectiveness test, we fine-tune MAC and Base-VGG-
F on the training set of each dataset and compare them
with other models on the testing set. Performance of all
approaches can be found in Table 2. Some representative
retrieval results of MAC can be found in Fig. 4.

From Table 2, we can see that the proposed MAC model
achieves impressive performances on all the four datasets.
In particular, the MAC network outperforms Base-VGG-F,
even when they are fine-tuned on the same training data.
This may be caused by the fact that, after incorporating
the Auxiliary stream, the semantic features from irrelevant
regions can be removed, and the retrieval process will mainly
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Table 2: Effectiveness test of 5 models on 4 datasets

Oxford Paris Ukbench Flower Bird

BOWE [45] 0.12 0.81 0.05 0.004
Siamese [56] 0.11 0.26 0.03 0.01
Base-VGG 0.29 0.87 0.31 0.17

Base-VGG-F 0.46 0.92 0.60 0.26
MAC 0.48 0.92 0.64 0.28

Table 3: Scalability test on 4 datasets after adding
a one-million confusion images from Flickr1M

Oxford Paris Ukbench Flower Bird

Base-VGG-F 0.10 0.88 0.20 0.12
MAC 0.11 0.88 0.25 0.12

focus on comparing the “desired content” shared by query
and target images. In other words, with the assistance of
feature maps from the Auxiliary attention stream, the Main
semantic stream perform better in distinguishing images
from different categories by focusing on the right regions.
Moreover, both the Main semantic stream and the Auxiliary
attention stream are fine-tuned on image retrieval datasets.
In this manner, we can assume that both the semantic
features and the attentive cues extracted become more
suitable for the task of image retrieval. That also explains
the remarkable performance enhancement from Base-VGG
to Base-VGG-F after fine-tuning the original VGG model on
image retrieval datasets.

Moreover, from Table 2 we find that the proposed MAC
network is not only suitable for the classic image retrieval
datasets but also fits for the fine-grained image classification
datasets. As shown in Fig. 4, MAC can successfully retrieve
images with fine-grained birds and flowers. This is an
interesting findings, implying that the usage of the Auxiliary
attention stream also helps maintain the unique attributes
of the desired objects while refining the noisy features.
Actually, the fine-grained classification/retrieval is much
more sensitive to the noise from irrelevant regions, while
visual attention cues can help to “neglect” such regions in
feature retrieval. In other words, the semantic stream mainly
learns about what is a bird, while the attention stream may
help in learning where is the right place to extract such
features. From these results, we can safely conclude that
incorporating an additional attention stream is effective for
the task of image retrieval.

4.3 Scalability Test

Beyond effectiveness test, we also conduct several experi-
ments to validate the scalability of MAC (and the baseline
models). Toward this end, we first incorporate the one
million images from the Flickr1M dataset [18] into the
testing sets of each dataset and run the retrieval experiments
again. Experimental results are shown in Table 3. By

Table 4: Performance of four models on synthesized
low-resolution/low-quality scenarios

Models Oxford Paris Ukbench Flower Bird

Base-VGG 0.24 0.84 0.26 0.07
Base-VGG-F 0.38 0.87 0.49 0.15

MAC 0.41 0.88 0.53 0.17

Table 5: Performance of four models on synthesized
rain/snow scenarios

Models Oxford Paris Ukbench Flower Bird

Base-VGG 0.17 0.35 0.10 0.02
Base-VGG-F 0.36 0.47 0.38 0.09

MAC 0.40 0.48 0.46 0.11

comparing the results in Table 3 and Table 2, we can
see that even with so many confusion images the retrieval
performance of both MAC and Base-VGG-F drop sharply
on most datasets. However, in such a challenging setting
the performance on UKbench still reaches 0.88. Considering
that Flickr1M contains many objects like flower and bird,
the performance of MAC on the fine-grained datasets Flower
and Bird are still acceptable, implying that the MAC is a
scalable network.

Beyond adding confusion images, in actual life many im-
ages uploaded to the Internet are low-quality/low-resolution
ones. To further validate the effectiveness of our approach,
from the four datasets we generate their low-resolution ver-
sion and test the performance of MAC and baseline models
Base-VGG and Base-VGG-F. The performance scores are
shown in Table 4, while some representative results are
shown in Fig. 5. By comparing Table 4 and Table 2, we
can see that the performance only slightly decreases, while
the results in Fig. 5 validates that the proposed approach is
scalable to low-quality and low-resolution scenarios. More-
over, in such scenarios MAC still outperforms Base-VGG
and Base-VGG-F. This may be caused by the fact that the
attention maps are less sensitive to resolution variation, and
many attention/saliency models will resize the input image
to an extremely low resolution (e.g., 32×32 in [24]) to speed
up the computation process. When the resolution decreases,
the Auxiliary attention stream still outputs reliable cues that
assists the localization of desired content, making the whole
network more reliable.

Moreover, many images in our daily life are taken in rain
or snow, and it is necessary to develop a model that can
effectively retrieve such images. To test the performance of
image retrieval models in such scenarios, we add synthesized
rain/snow to the four datasets. As shown in Fig. 5 and
Fig. 2, the performance scores of both MAC and the
two baseline models decrease in rain/snow scenarios. In
particular, the performance on UKBench drops remarkably
due to it contains many large-scale scenes, while the other
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Figure 5: Representative retrieval results of MAC in rain/snow and low-resolution/low-quality scenarios. Left column:
results on original datasets; Middle column: results on datasets with synthesized rain/snow; Right Column: results on

datasets with degraded resolution/quality.

three datasets contain large objects that are less influenced
by rain and snow, leading to smaller performance drop.
Actually, rain and snow can be viewed as additive noise
to the original images, while such noises can be viewed as
outliers in a local region. In the convolutional operations of
CNNs, such outlier will lead to unexpected local maximum
or minimum, while such wrongly extracted local extremum
will lead to inaccurate semantic features in the Base-VGG-
F. Surprisingly, the performance decrease in MAC is often
less than Base-VGG-F, which may be caused by the fact
that the Auxiliary attention stream is capable to ignore
such frequently appeared fake local extremum and enforces
the semantic streams focus on the attractive regions. These
results further validate the scalability of the proposed two-
stream attentive CNNs.

4.4 Performance Analysis

Finally, we conduct an experiment to see the influence of the
parameter λ, which controls the way that the two streams

are fused. By varying λ from 0.0 to 1.0 with a step of 0.2,
we test the performance of MAC on the Flower dataset and
obtain a performance curve (as shown in Fig. 6). We find
that over-emphasizing either stream will lead to degraded
performance, and the best performance is achieved at λ=0.6,
indicating the Main stream has weight 0.6 and the Auxiliary
stream has weight 0.4.

5 CONCLUSION

In this paper, we propose two-stream attentive CNNs for
image retrieval. By initializing a Main stream for semantic
feature extraction and an Auxiliary stream for attention
prediction, the two-streams fused and fine-tuned on image
retrieval datasets. In this manner, the capability of the
whole network in capturing inherent query intention can
be improved. Experimental results show that the proposed
approach has impressive performance on two image retrieval
datasets and two fine-grained image classification datasets.
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Figure 6: Influence of fusion weight λ on Flower dataset.

Moreover, its performances on retrieving low-resolution/low-
quality and rain/snow images are also very promising.

In our future work, we will seek to train a network with
attention cues embedded in many locations of semantic fea-
ture extraction so as to extract more discriminative features
for outdoor scenes. Moreover, the hashing operations will
be embedded into the network so that the retrieval process
can become much faster.
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